dynabench.dataset.transforms
Functions
  | 
A decorator indicating abstract methods.  | 
  | 
Shallow copy operation on arbitrary Python objects.  | 
Classes
  | 
Helper class that provides a standard way to create an ABC using inheritance.  | 
  | 
|
  | 
Data class for 2D grid data.  | 
  | 
Compose function for combining multiple transforms.  | 
  | 
Base class for data items.  | 
Default transformation for a data item.  | 
|
  | 
Create an edge list graph (src, dst) to use with PyG.  | 
Create an edge list from the KNN graph.  | 
|
Create a Cloud item from a grid data item  | 
|
  | 
Data class for grid data.  | 
  | 
Downsample the grid to a smaller size using FFT.  | 
  | 
Downsample the grid by a factor.  | 
  | 
|
  | 
kd-tree for quick nearest-neighbor lookup.  | 
  | 
Create a KNN graph from the cloud data.  | 
  | 
Point sampling transform for the dataset.  | 
  | 
Convert the data item to a dictionary.  | 
  | 
Cast the data item to the correct type.  | 
- class dynabench.dataset.transforms.Compose(transforms: List[BaseTransform])[source]
 Bases:
BaseTransformCompose function for combining multiple transforms. Iterates over transformations and applies them to the data item.
- Parameters:
 transforms (List[BaseTransform]) – List of transforms to be applied to the data
- class dynabench.dataset.transforms.DefaultTransform[source]
 Bases:
BaseTransformDefault transformation for a data item. Does not modify the data.
- Parameters:
 data_item (DataItem)
- Returns:
 transformed data_item
- Return type:
 DataItem
- class dynabench.dataset.transforms.EdgeList(k: int)[source]
 Bases:
ComposeCreate an edge list graph (src, dst) to use with PyG.
- Parameters:
 data_item (CloudItem)
- Returns:
 data_item with edge_list as knn_graph
- Return type:
 CloudItem
- class dynabench.dataset.transforms.EdgeListFromKNN[source]
 Bases:
BaseTransformCreate an edge list from the KNN graph.
- Parameters:
 data_item (CloudItem)
- Returns:
 data_item with knn_graph
- Return type:
 CloudItem
- class dynabench.dataset.transforms.Grid2Cloud[source]
 Bases:
BaseTransformCreate a Cloud item from a grid data item
- Parameters:
 data_item (GridItem)
- Returns:
 data_item with cloud shape
- Return type:
 CloudItem
- class dynabench.dataset.transforms.GridDownsampleFFT(target_size: Tuple[int, int] = (1.0, 1.0))[source]
 Bases:
BaseTransformDownsample the grid to a smaller size using FFT.
- Parameters:
 target_size (Tuple[int, int]) – Target size of the grid.
- class dynabench.dataset.transforms.GridDownsampleFactor(factor: int = 2)[source]
 Bases:
BaseTransformDownsample the grid by a factor.
- Parameters:
 factor (int) – Factor by which to downsample the grid.
- class dynabench.dataset.transforms.KNNGraph(k: int, grid_limits: Tuple[float] = (1.0, 1.0))[source]
 Bases:
BaseTransformCreate a KNN graph from the cloud data.
- Parameters:
 data_item (CloudItem)
- Returns:
 data_item with knn_graph
- Return type:
 CloudItem
- class dynabench.dataset.transforms.PointSampling(num_points: int = 900)[source]
 Bases:
BaseTransformPoint sampling transform for the dataset.
- Parameters:
 num_points (int) – Number of points to sample.
k (int) – Number of nearest neighbors to use for the KNN graph.
- class dynabench.dataset.transforms.ToDict[source]
 Bases:
BaseTransformConvert the data item to a dictionary.
- Parameters:
 data_item (DataItem)
- Returns:
 data_item as a dictionary
- Return type:
 dict
- class dynabench.dataset.transforms.TypeCaster(dtype: ~numpy.dtype = <class 'numpy.float32'>)[source]
 Bases:
BaseTransformCast the data item to the correct type. (In place!!!)