Benchmark Results

Here we give an overview of the benchmark results for the different models and datasets. The results are given in terms of the mean squared error (MSE) for each model and dataset. The MSE is computed as the average of the squared differences between the predicted and true values. The lower the MSE, the better the model performs.

Single Step Prediction

The table below shows the MSE for the different models and datasets for single step prediction for 900 points in the dataset. The MSE values are given in scientific notation. The CNN, ResNet and NeuralPDE models have been trained and evaluated on the grid version of the datasets, while the other models have been trained and evaluated on the cloud version of the datasets.

Single Step Prediction

model

Advection

Burgers

Gas Dynamics

Kuramoto-Sivashinsky

Reaction-Diffusion

Wave

FeaSt

0.000130351

0.0116155

0.0162

0.0117867

0.000488848

0.00523298

GAT

0.00960113

0.0439986

0.037483

0.0667057

0.00915208

0.0151498

GCN

0.026397

0.13899

0.0842611

0.436563

0.164678

0.0382004

GraphPDE

0.000137098

0.0107391

0.0194755

0.00719822

0.000142114

0.00207144

KernelNN

6.31157e-05

0.0106146

0.013354

0.00668698

0.000187019

0.00542925

Point Transformer

4.41633e-05

0.0103098

0.00724899

0.00489711

0.000141248

0.00238447

PointGNN

2.82496e-05

0.00882528

0.00901649

0.00673036

0.000136059

0.00138772

CNN

5.30848e-05

0.0110988

0.00420368

0.000669837

0.00036918

0.00143387

ResNet

2.15721e-06

0.0148052

0.00321235

0.000490104

0.000156752

0.00145884

NeuralPDE

8.24453e-07

0.0112373

0.00373416

0.000536958

0.000303176

0.00169871

Persistence

0.0812081

0.0367688

0.186985

0.142243

0.147124

0.113805

Multi-16-Step Prediction

The table below shows the MSE for the different models and datasets after 16 prediction steps (in a closed loop) for 900 points in the dataset. The MSE values are given in scientific notation. The CNN, ResNet and NeuralPDE models have been trained and evaluated on the grid version of the datasets, while the other models have been trained and evaluated on the cloud version of the datasets.

16-Step Prediction

model

Advection

Burgers

Gas Dynamics

Kuramoto-Sivashinsky

Reaction-Diffusion

Wave

FeaSt

1.48288

0.561197

0.819594

3.74448

0.130149

1.61066

GAT

41364.1

0.833353

1.21436

5.68925

3.85506

2.38418

GCN

3.51453e+13

13.0876

7.20633

1.70612e+24

1.75955e+07

7.89253

GraphPDE

1.07953

0.729879

0.969208

2.1044

0.0800235

1.02586

KernelNN

0.897431

0.72716

0.854015

2.00334

0.0635278

1.57885

Point Transformer

0.617025

0.503865

0.642879

2.09746

0.0564399

1.27343

PointGNN

0.660665

1.04342

0.759257

2.82063

0.0582293

1.30743

CNN

0.00161331

0.554554

0.995382

1.26011

0.0183483

0.561433

ResNet

8.64621e-05

1.86352

0.480284

1.0697

0.00704612

0.299457

NeuralPDE

0.000270308

0.659789

0.443498

1.05564

0.0224155

0.247704

Persistence

2.39393

0.679261

1.457

1.89752

0.275678

2.61281